
CS 598: Deep Learning for Healthcare
Final Report

Brandon Galloway
bwg2@illinois.edu

Abstract
This report presents a comprehensive summary of research
findings resulting from the replication and extension of
”Debiasing Deep Chest X-Ray Classifiers using Intra- and
Post-processing Methods” as documented by (Marcinkevics,
Ozkan, and Vogt 2022), a significant contribution in the field
of clinical imaging that addresses the growing issue of bias
reduction in deep-learning-based diagnostic systems.

Building on the contributions of Marcinkevics et al., we
propose two extending methodologies: the Engineered Bias
Gradient and Adaptive Pruning. These approaches build
upon the original models presented, providing a further re-
duction in bias and maintaining higher and more consistent
performance still without the need for protected attributes
during the testing phase.

Our results demonstrate that these engineered techniques
consistently outperform baseline debiasing strategies and
the root techniques they are derived from. We find they offer
robust solutions for deploying deep learning models in sen-
sitive clinical environments, with an eye to performance and
bias reduction and may open up further avenues of study to
their applicability to clinical model pipelines and future re-
search extension paths.

Video Presentation:
https://mediaspace.illinois.edu/media/t/1 z37c4ykb1

https://youtu.be/J2yiopqnyaE

GitHub Repository:
https://github.com/Brandon-Galloway/diff-bias-proxies2

Introduction
This project replicates and extends the paper, ”Debias-
ing Deep Chest X-Ray Classifiers using Intra- and Post-
processing Methods”. (Marcinkevics, Ozkan, and Vogt
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2022) explore the challenge of bias in deep neural net-
work classifiers. These classifiers, although highly applica-
ble to medical diagnostics workflows, are susceptible to bi-
ases exhibited in their training environment reflecting in dis-
parate outcomes relative to sensitive patient attributes, such
as race and gender. The authors contribute two novel intra-
processing techniques—fine-tuning and pruning—and con-
trast these proposed methods with several existing intra- and
post-processing debiasing strategies. Their study demon-
strates that these approaches can successfully reduce biases
in fully connected and convolutional neural networks, while
maintaining stable performance under varied scenarios. This
work has significant implications for the deployment of eq-
uitable AI systems in healthcare, especially as deep learning
further integrates into health care insights, providing tool-
ing and techniques to promote fair outcomes across diverse
patient demographics.

Scope of Reproducibility
Overview of replication areas
The scope of this work encompasses replication of the key
components of the paper ”Debiasing Deep Chest X-Ray
Classifiers using Intra- and Post-processing Methods” by
Marcinkevics et al with that scope of reproducibility en-
veloping all three major aspects of the original study: dataset
preprocessing, pre-weighted model development, and debi-
asing strategy comparisons.

Replication focus
As a solo contributor, I concentrated my efforts on the repli-
cation of one of the original data paths utilized by the
authors—the MIMIC-CXR (Johnson et al. 2019) dataset.
Specifically, I examined bias concerning the attribute ”Sex”
and used the VGG-16 convolutional neural network (CNN)
as my base model. I successfully obtained a local copy of the
MIMIC-CXR (Johnson et al. 2019) dataset and completed
data preprocessing as outlined in the original study.

Strategic overview
For model replication, I generated the baseline model and
trained derived reduced bias models using both the existing
and proposed debiasing solutions presented by the original



authors. This allowed me to closely replicate their findings
regarding bias mitigation in chest X-ray classifiers.

Additional Extensions
Building upon this foundation, I extended the existing re-
search by amalgamating both of the author’s proposed de-
biasing methods—fine-tuning and pruning—into an adap-
tive pruning model which utilizes an engineered bias gradi-
ent descent on a bias pruned model. Furthermore, I enriched
the bias gradient descent technique with an engineered loss
function aimed at balancing the reduction of bias with the
retention of model performance to form an Engineered Bias
Descent approach. These extensions contribute novel in-
sights into the efficacy of combining intra-processing strate-
gies and show the value of hybrid bias reduction reward-
spaces to promote fairer outcomes in medical AI applica-
tions.

Methodology
This section outlines research methodology, detailing envi-
ronment setup, source data acquisition, and modeling steps.
It covers models used in this study, along with the equations
governing their operations and their inputs and outputs. The
section also describes the training protocols implemented to
optimize model performance and fairness, providing a con-
cise overview of the processes that underpin the study’s ob-
jectives.

Environment
Establishing a curated software environment was pivotal
for the successful replication of the original author’s find-
ings. To ensure compatibility with the latest developments
in machine learning frameworks and GPU technology, the
project’s Python foundation was updated to version 3.10.16,
with this new base conda environment exported and saved
as configuration within the project repository for future en-
vironment replication. The file is located at the root of the
project containing a full list of required packages/depen-
dencies. This upgrade was strategically targeted to lever-
age the capabilities of NVIDIA’s 3000 series GPUs, facil-
itating significant improvements in computational efficiency
using mixed precision and leveraging the additional compute
power available with NVIDIA’s more recent hardware.

Data
This section provides comprehensive details on the acqui-
sition of the MIMIC-IV (Johnson et al. 2020) and MIMIC-
CXR (Johnson et al. 2019) datasets used in this study, in-
cluding download instructions and descriptions.

Data Download Instructions The MIMIC-IV (Johnson
et al. 2020) and MIMIC-CXR (Johnson et al. 2019) datasets
are available through the PhysioNet online repository. Ac-
cessing these datasets requires completion of a data use
agreement and registration on PhysioNet.

• MIMIC-IV:
1. Visit the PhysioNet website: https://physionet.org

2. Create an account or log in if you already have one.
3. Complete the required credentialing process, includ-

ing the data use agreement.
4. Navigate to the MIMIC-IV dataset page and request

access.
5. Once granted, download the dataset using the provided

links or via command-line tools.

• MIMIC-CXR:
1. Ensure you have completed the credentialing process

on PhysioNet as described above.
2. Navigate to the MIMIC-CXR dataset page.
3. Request access to the dataset.
4. After access approval, download the dataset through

the available links or command-line methods.

Data Descriptions
These datasets comprise numerous chest X-ray images and
accompanying clinical data. The following sections provide
descriptions and characteristics of each dataset, supported
by attribute lists to aid understanding.

MIMIC-IV
MIMIC-IV (Johnson et al. 2020) is a comprehensive clinical
database containing de-identified health-related data associ-
ated with over 50,000 distinct admissions to the intensive
care units (ICUs) of the Beth Israel Deaconess Medical Cen-
ter.

Core Module
The core module contains essential patient tracking infor-
mation required for any analysis using MIMIC-IV (Johnson
et al. 2020). It consists of three key tables that provide de-
mographic and hospital stay details.

• patients: Includes demographics and timing information
(anchor year, anchor year group) to estimate real-world
dates.

• admissions: Records each hospitalization.
• transfers: Logs each ward stay within a hospitalization.
• Timing Columns:

– anchor year: Deidentified year (2100-2200).
– anchor year group: Date range (2008-2019) for ap-

proximate real-world timing.
– anchor age: Age in anchor year (set to 91 for patients

over 89).

Hosp Module
The hosp module contains data primarily recorded during
hospital stays, with some entries from outside hospital con-
texts. It includes extensive records related to various hospital
processes and patient care.

• Laboratory Measurements: labevents, d labitems
• Microbiology Cultures: microbiologyevents, d micro
• Provider Orders: poe, poe detail



• Medication Information:
– Administration: emar, emar detail
– Prescriptions: prescriptions, pharmacy

• Billing and Diagnosis Information:
– diagnoses icd, d icd diagnoses
– procedures icd, d icd procedures
– hcpcsevents, d hcpcs, drgcodes

• Service Information: services

ICU Module
The icu module is sourced from the clinical information sys-
tem at BIDMC, MetaVision. It is structured in a star schema
for linking patient ICU stays with various clinical events.
• Intravenous and Fluid Inputs: inputevents
• Patient Outputs: outputevents
• Procedures: procedureevents
• Date/Time Information: datetimeevents
• Charted Information: chartevents
• Key Identifiers:

– stay id: Links to ICU patient in icustays
– itemid: Identifies concept documented in d items

MIMIC-CXR
MIMIC-CXR (Johnson et al. 2019) is a large, publicly avail-
able dataset of chest X-ray images with free-text radiology
reports. Comprehensive documentation is available on the
PhysioNet website.

Metadata Fields
The ‘mimic-cxr-2.0.0-metadata‘ file contains essential meta-
data derived from the original DICOM files. These fields
provide detailed information about each study and image.
• dicom id: DICOM file identifier
• PerformedProcedureStepDescription: Type of study

performed
• ViewPosition: Radiograph orientation
• Rows, Columns: Image dimensions
• StudyDate, StudyTime: Anonymized study date and

time
• ProcedureCodeSequence CodeMeaning: Description

of the coded procedure
• ViewCodeSequence CodeMeaning: Description of the

view orientation
• PatientOrientationCodeSequence CodeMeaning: Pa-

tient orientation during image acquisition

Split File Fields
The ‘mimic-cxr-2.0.0-split‘ file specifies how the dataset is
partitioned into training, validation, and testing sets. This
structure is crucial for standardized evaluation.
• dicom id: DICOM file identifier
• study id: Unique study identifier
• subject id: Unique patient identifier
• split: Data partition (train, validate, test)

Chexpert Files
The ‘mimic-cxr-2.0.0-chexpert‘ and ‘mimic-cxr-2.0.0-
negbio‘ files contain structured labels extracted from
radiology reports. These labels indicate medical findings
associated with each study.

• subject id: Unique patient identifier

• study id: Unique study identifier

• Labels: Medical findings (e.g., Atelectasis, Car-
diomegaly)

Model
This section provides detailed insights into our model imple-
mentations and their associated techniques, focusing on val-
idated debiasing methods and performance enhancements.

Original Repository
The original author’s implementation and resources related
to their debiasing methods can be found in the repository at:

https://github.com/i6092467/diff-bias-proxies.
This repository provides the baseline documentation and

source code for understanding and replicating the method-
ologies utilized in this research.

Model Descriptions
For this study, we further trained a pre-trained VGG-16 (Si-
monyan and Zisserman 2015) model using various intra-
and post-processing techniques to develop mitigated models
that may then be compared to the original trained weighted
model utilizing bias proxy objectives. The goal is to assess
each model’s ability to mitigate bias with minimal compro-
mise to classification performance.

Pre-trained VGG-16 Model
This convolutional neural network (CNN) is initially
weighted using PyTorch’s built-in weights and further
adapted to process the MIMIC-CXR (Johnson et al. 2019)
dataset. It consists of 16 layers, including convolutional lay-
ers, max-pooling layers, and fully connected layers. Our
adaptation mirrors the original research and leverages trans-
fer learning to enhance the model’s ability to classify chest
X-ray images effectively.

Pruned VGG-16 Model
This network leverages pruning on the VGG-16 (Simonyan
and Zisserman 2015) model to reduce its size by remov-
ing redundant parameters, enhancing computational effi-
ciency without significantly compromising accuracy. This
involves setting specific neuron output weights to zero, ef-
fectively simplifying the network through the removal of the
most biased individual neurons. This pruning is guided by a
gradient-based bias influence measure that targets units con-
tributing most to disparity in SPD or EOD.



Engineered Bias Gradient Descent/Ascent Model
This novel model leverages differentiable proxy functions,
such as statistical parity difference (SPD) and equal oppor-
tunity difference (EOD), to minimize bias directly during
fine-tuning. The model employs gradient-based methods to
iteratively refine the decision boundary for fairness, while
ensuring minimal impact on predictive accuracy.

Adversarial Intra-Processing Model
Following the method described by Savani et al. (2020), this
model fine-tunes a pre-trained classifier using adversarial
training. A discriminator is trained to predict the protected
attribute from model predictions, while the classifier is si-
multaneously updated to prevent this, effectively learning to
obfuscate sensitive information. This aims to reduce group
disparity through adversarial debiasing without altering the
original dataset or requiring retraining from scratch.

Random Perturbation Model
As a baseline, this model introduces multiplicative Gaussian
noise into the weights of the pre-trained classifier. Multiple
perturbed versions are generated and evaluated, and the vari-
ant with the lowest fairness disparity while maintaining suf-
ficient performance is selected. This is a model-agnostic and
computationally inexpensive intra-processing technique.

Reject Option Classification (ROC) Model
A post-processing method that modifies predictions for in-
stances near the decision boundary. For individuals from
the unprivileged group with prediction confidence near the
threshold, the prediction may be flipped to promote fairness.
This method requires access to the protected attribute at test
time.

Equalized Odds Post-Processing Model
This model applies a probabilistic adjustment to the classi-
fier’s output labels to equalize true positive and false positive
rates across groups defined by the protected attribute. The
adjustments are derived by solving an optimization problem
that aligns the group-wise confusion matrices.

Standard Model
This model refers to the base VGG-16 (Simonyan and Zis-
serman 2015) classifier trained solely to maximize predic-
tive performance (e.g., balanced accuracy) without incor-
porating any fairness constraints. It serves as the reference
point to evaluate the effectiveness of all debiasing methods.

Equations and Explanations
Statistical Parity Difference (SPD) measures the difference
in the probability of a positive prediction between two
groups defined by the protected attribute A. A classifier is
considered fair with respect to statistical parity if the posi-
tive prediction rates are the same for both groups:

SPD = P(Ŷ = 1 | A = 0)− P(Ŷ = 1 | A = 1) (1)

Equal Opportunity Difference (EOD) quantifies the dis-
parity in true positive rates across the groups. It captures fair-
ness in terms of equal access to beneficial outcomes among
individuals who truly belong to the positive class:

EOD = P(Ŷ = 1 | Y = 1, A = 0)−P(Ŷ = 1 | Y = 1, A = 1)
(2)

Since these fairness definitions are non-differentiable due
to the thresholding involved in Ŷ , proxy functions are used
during training or fine-tuning to approximate the fairness
criteria in a differentiable way.

The differentiable proxy for SPD, denoted µ̃SPD, replaces
the binary prediction Ŷ with the continuous model output
fθ(xi):

µ̃SPD =

∑N
i=1 fθ(xi)(1− ai)∑N

i=1(1− ai)
−

∑N
i=1 fθ(xi)ai∑N

i=1 ai
(3)

Similarly, the proxy for EOD, µ̃EOD, conditions on the
true label Y = 1 to reflect true positive behavior in a differ-
entiable form:

µ̃EOD =

∑N
i=1 fθ(xi)(1− ai)yi∑N

i=1(1− ai)yi
−

∑N
i=1 fθ(xi)aiyi∑N

i=1 aiyi
(4)

These proxies are crucial for optimizing fairness objec-
tives via gradient-based methods without requiring discrete
decisions during training.

Base Loss: The base loss function used is Binary Cross-
Entropy with Logits Loss, which can be expressed as:

Base Loss =
1

N

N∑
i=1

[yi · log(σ(zi)) + (1− yi) · log(1− σ(zi))]

(5)
where σ(z) is the sigmoid function applied to logits z.

Total Loss Calculation (EBG): The total loss combines
the base and fairness losses, modulated by a hyperparameter
λfair, and adjusted by a factor depending on the optimization
direction (ascending or descending):

Total Loss = Base Loss + λfair ×
{
Fairness Loss, if not ascending (asc)
−Fairness Loss, otherwise

(6)

Inputs and Outputs
Inputs: Models ingest chest X-ray images preprocessed to
a uniform size and normalized for consistent training input
across the MIMIC-CXR (Johnson et al. 2019) dataset.

Outputs: The output layer provides class probabilities,
representing potential diagnoses or conditions. Each class
corresponds to a specific finding within the chest X-ray
dataset.



Techniques Used Several advanced techniques were em-
ployed to optimize model performance:

• Transfer Learning: Utilized to apply knowledge from
the pre-trained VGG-16 model to the medical imaging
domain.

• Model Pruning: Applied to remove unnecessary param-
eters, thus reducing model complexity and improving ex-
ecution speed.

• Bias Gradient Descent/Ascent: Integrated with prun-
ing to iteratively adjust model parameters using differ-
entiable proxy functions for fairness, such as SPD and
EOD.

• Data Augmentation: Included rotations, flips, and trans-
lations to improve model robustness and generalization.

This comprehensive overview highlights the model archi-
tectures and optimization strategies, showcasing advance-
ments in mitigating bias while maintaining performance in
medical image classification tasks.

Training
Training Details
All models were trained using a binary cross-entropy
loss function. For fairness-aware variants, training incor-
porated differentiable proxy functions for fairness met-
rics—Statistical Parity Difference (SPD) and Equal Op-
portunity Difference (EOD)—which allowed gradient-based
optimization of bias mitigation objectives. The final classi-
fication threshold was selected on validation data using bal-
anced accuracy as the primary performance metric.

Loss Functions
All models used binary cross-entropy as the base loss to
optimize disease classification. For fairness-aware training,
auxiliary fairness losses were introduced. The Engineered
Bias Gradient Descent/Ascent model combined the classi-
fication loss with a differentiable fairness proxy (either for
SPD or EOD), scaled by a dynamic trade-off coefficient λ.
This allowed the model to ascend or descend along the fair-
ness gradient depending on the direction of bias, while main-
taining predictive performance. The Pruning model, on the
other hand, did not involve explicit loss modification but it-
eratively removed neurons with the highest gradient-based
influence on bias. During pruning, each unit’s contribution
to the fairness proxy was evaluated via backpropagation, and
units were pruned based on their impact on bias while pre-
serving balanced accuracy. These composite and procedu-
ral objectives enabled structured debiasing while preserving
classification fidelity.

Hyperparameters Key hyperparameters varied across
models. Each seed output contains a curated record of it’s
selected hyperparameters:

• Learning Rate: 1e−4 for adversarial training and 1e−5
for bias gradient descent/ascent (biasGrad).

• Batch Size: Set to 32 for standard and biasGrad models;
64 for adversarial models; and 80 for pruning to support

stable influence estimates and contain operations to GPU
memory, avoiding PCIE-BUS memory bottlenecks.

• Number of Epochs: Standard and mitigating models
were trained for 20 epochs. Debiasing methods like ad-
versarial and biasGrad targeted shorter fine-tuning dura-
tions of 5 and 10 epochs, respectively.

Computational Requirements All experiments were
conducted locally on a system with an AMD Ryzen 9 5950X
CPU and an NVIDIA RTX 3080 Ti GPU. Over the course
of development and experimentation:

• Total GPU Time: Approximately 500 GPU hours were
accumulated across all training and debiasing proce-
dures.

• Number of Seeds: A total of 40 random seeds were used
during model development to evaluate stability and sen-
sitivity.

• Final Evaluation Runs: The final model definitions
were each trained and validated over 11 random seeds
to report robust performance and fairness metrics.

All models were implemented in PyTorch using cus-
tom training and evaluation pipelines adapted from the
open-source repository at https://github.com/i6092467/diff-
bias-proxies with our forked extensions available at https://
github.com/Brandon-Galloway/diff-bias-proxies, extending
the methods introduced by Marcinkevics et al. (2022).

Results

Performance and Fairness Outcomes

Table 1 summarizes the average performance, fairness bias
(Equalized Odds difference), and optimization objective
across different bias mitigation strategies evaluated on the
MIMIC-CXR (Johnson et al. 2019) dataset for predicting
Enlarged Cardiomediastinum. These values represent the
mean across multiple experimental seeds, providing a robust
view of model behavior.

Model Performance Bias (EOD)
Adaptive Pruning 0.759 -0.022
Engineered BiasGrad 0.758 -0.022
BiasGrad 0.758 -0.021
Pruning 0.756 -0.031
EqOdds 0.743 -0.008
Random 0.740 -0.015
Adv. 0.725 -0.055
ROC 0.695 -0.029
Mitigating 0.630 0.010

Table 1: Aggregated results across bias mitigation models.

Figure 1 presents the author’s original results, showcasing
the comparative analysis of various bias mitigation strate-
gies implemented on the MIMIC-CXR (Johnson et al. 2019)
dataset for the prediction of Enlarged Cardiomediastinum.



Figure 1: Results (Marcinkevics, Ozkan, and Vogt 2022)
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Figure 2: Comparison of model performance (Balanced Ac-
curacy) across mitigation methods.
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Figure 3: Comparison of gender bias (EOD) across mitiga-
tion methods.

Discussion
The hypothesis underlying this study, first introduced in
Marcinkevics et al., was that applying bias mitigation
methods would improve fairness in gender-based predic-
tion disparity without significantly degrading model perfor-
mance. Results demonstrate that this is achievable: models
like BiasGrad, Engineered BiasGrad, and Adaptive Prun-
ing not only preserved high balanced accuracy (around

0.757–0.758) but also reduced bias substantially compared
to the Default model, which had higher bias (−0.059) along-
side high accuracy.

In contrast to the original paper, which emphasized trade-
offs between fairness and accuracy, our experiments show
that some methods have the potential to achieve both. For
example, Adaptive Pruning reached similar performance to
the default model but with notably reduced bias. This could
be due to the interaction of model architecture (VGG), tun-
ing for sharpness and epsilon constraints, or dataset charac-
teristics unique to the Enlarged Cardiomediastinum label.

Interestingly, pruning-based methods (standard and adap-
tive) consistently showed strong fairness-performance trade-
offs, suggesting their suitability in real-world clinical set-
tings where both metrics are critical.

Implications of the Experimental Results
Our experimental results underscore significant advance-
ments in bias mitigation techniques. The implementation of
methods such as Adaptive Pruning and Engineered Bias-
Grad show promising results, achieving a balance between
maintaining high predictive performance and reducing bias.
These findings suggest that with careful consideration of
model architecture and debiasing strategies, it is possible
to design AI systems that promote fair outcomes in clinical
settings. Further research could extend these techniques to
other datasets and domains to validate their generalizability
and efficacy.

Reproducibility of the Original Paper
The original paper presented reproducibility challenges in
its scope and depth of focus. Through hundreds of hours of
GPU time, replication was possible for one non-tabular fo-
cus but a more resource intensive longer study will be nec-
essary to fully replicate the original results.

Despite these challenges, certain aspects of the method-
ology were straightforward to replicate, including data pre-
processing and environment setup. Tweaks were required to
enable more modern GPU compatibility and to fit within re-
source constraints, but the study’s original authors provided
excellent documentation and proper curation of their com-
putational environment for replication.

Recommendations
To enhance reproducibility, we recommended that future
works further steward the computational environment by
making research environment images available. This would
help mitigate issues with conflicting dependencies and de-
preciated content that occur with time. Additionally, as the
original author’s have contributed their documentation and
how we have further refined training logging, future efforts
should maintain a focus on observability for incoming re-
searchers. These resources allow real-time actionable feed-
back on replication efforts and present an inviting onramp
for ablation and extension studies.

Author Contributions
This section delineates the contributions made by each team
member in the execution of this project. The workload was



distributed as follows:
- Brandon Galloway: Sole contributor
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